
ED 042 367

DOCUMENT RESUME

24v EM 008 423

AUTHOR Newton, Rita M.; Thomas, Warren H.
TITLE Developing a Cotputer Program for Bus Routing. Final

Re port.
INSTITUTION State Univ. of New York Research Foundation, Albany.
SPONS AGENCY Office of Education (DHEW) , Washington, D.C. Bureau

of Research.
BUREAU NO BR-9-B-124
PUB DATE Jul 70
GRANT 0EG-2-9-420126-1062(010)
NOTE 139p.

EDRS PRICE
DESCRIPTORS

EDRS Price MF-$0.75 HC-$7.05
*Bus Transportation, *Computer Programs,
*Scheduling, School Buses, Student Transportation

ABSTRACT
A computer-based method was developed that can

translate available data about schools, students,..allaus facilities
into a set of bus routes and schedules prior to the start of the
school year. Each route can be so designed via the computer model
that student riding time and bus capacity constraints are satisfied
at the same time that total bus travel (including running empty) and
number of routes required to service all the stops are minimized. The
mathematical models developed were programed in FORTRAN IV for use on
a CDC 6400 computer and were applied to four schools, An efficient
routing system involving six possible bus route origins and 96 stops
was developed for one of these schools in 61 seconds using a CDC 6400
computer. A bibliography and program listing are appended. (Author/MF)



ti

Pr\

ri
FINAL REPORT

Project No. 9-B-124
C21

Grant No. 0EG-2-9-420128-1062(010)

DEVELOr I

ING A COMPUTER PROGRAM FOR BUS ROUTING

Rita M. Newton
Warren H. Thomas

State University of New York at Buffalo
Buffalo, New York 14214

The Research Foundation of the
State University of New York

P.O. Box 7126
Albany, New York 12224

July 1970

U.S. DEPARTMENT OF
HEALTH, EDUCATION AND WELFARE

Office of Education
Bureau of Research

......31=1.1M



U.S. DEPARTMENT Of HEALTH, EDUCATION & WELFARE

N. OFFICE Of EDUCATION

Pr\
THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM THE

PERSON OR ORGANIZATION ORIGINATING IT. POINTS OF VIEW OR OPINIONS

C1 STATED DO NOT NECESSARILY REPRESENI OFFICIAL OFFICE OF EDUCATION

POSITION OR POLICY.

CD FINAL REPORT

CI
Lit Project No. 9-B-124

Grant No. OEG -2 -9 -420128 -1062(010)

DEVELOPING A COMPUTER PROGRAM FOR BUS ROUTING

Rita M. Newton
Warren H. Thomas

State University of New York at Buffalo
Buffalo, New York 14214

July 1970

The research reported herein. was performed pursuant to a grant
with the Office of Education, U.S. Department of Health, Education,
and Welfare. Contractors undertaking such projects under Government
sponsorship are encouraged to express freely their professional
judgment in the conduct of the project. Points of view or opinions
stated do not, therefore, necessarily represent official Office of
Education position or policy.

U.S. DEPARTMENT OF
HEALTH, EDUCATION AND WELFARE

Office of Education
Bureau of Research



ABSTRACT

This report describes and evaluates a practical computer based

method for translating data concerning:

1. the location of each school to be serviced by a bus fleet,

2. the locations and numbers of students to be transported to

each school,

3. the time interval during which the students are to be

transported, and

4. the available bus facilities

into a set of bus routes which specify school-to-school sequencing of

each bus and the stop-to-stop route to be followed in traveling to

every school. Each route is designed in such a way that the bus

capacity and student riding time constraints are satisfied while

attempting not only to minimize the total bus travel time (including

running empty) for a school but also to minimize the number of routes

required to service all the stops associated with the school. The

mathematical models developed were programmed in FORTRAN IV for use on

a CDC 6400 computer and were applied to four schools in the Williamsville

New York Central School District. An efficient routing system

involving 6 possible bus route origins and 96 stops was developed for one

of these schools in 61 seconds on a CDC 6400 computer.
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I. INTRODUCTION

School districts are aware of the power of the digital computer as

a tool for both reducing cost and improving service in the management

of their educational programs. The computer has already proven its worth

in financial accounting, in personnel administration, in class scheduling,

and in planning school construction.

One area of school administration which has not yet been adequately

served by the capability of the computer is the management of the

transportation system. Since the cost of procurement, maintenance, and

operation of a bus fleet requires a large portion of a school district's

budget, the director of transportation is expected to minimize these

costs while simultaneously providing an acceptable level of service.

At present, most schools prepare bus routes and schedules manually

by using a large map of the district and a listing of the school census.

Since a single school may have as many as two hundred bus stops and a

district as many as twenty-five schools, this procedure is not only time

consuming but requires an excessive amount of administrative talent

which could be better utilized in other endeavors. Moreover, the quality

of the bus routes prepared by hand is a function of the scheduler's

experience, i.e. the best routes are usually prepared by the most ex-

perienced schedulers.

In addition to the bus scheduling problem, school administrators

are also interested in being able to evaluate the sensitivity of current

fleet operations to various changes. For example, it would be useful to

be able to easily examine how population fluctuations, a change in bus

fleet size, a change in school boundaries, or a change in policy con-

cerning the maximum allowable walking distance would affect bus operations.



Therefore, a great need exists for some means for generating school bus

routes and schedules efficiently.

This dissertation describes and evaluates a computer based

methodology for translating data concerning:

1. the identification and location of each school which is to

be serviced by the bus fleet,

2. the location and number of students to be transported

to each school,

3. the time interval during which students are to be

transported, a

4. the available bus facilities

into a set of bus routes which specify school-to-school sequencing of

each bus and the stop-to-stop route to be followed in traveling to the

school. Each route is designed in such a manner that the bus capacity

and maximum allowable student riding time constraints are satisfied

while attempting to not only minimize the total bus travel time (includ-

ing running empty) for a school but also to minimize the number of routes

required to service all the stops associated with the school.

The output of the computer program based upon this methodology is

the detailed information needed to prepare specific bus schedules and

bus passes for each student. In addition it provides a means for de-

termining overall measures of schedule performance as total travel time,

average riding time, average bus load, etc. These performance measures

coupled with the inexpensive and rapid computer development of a complete

set of bus routes for a school district make feasible a quantitative

evaluation of the effect of any administrative policy changes on the

transportation system.



The computer model makes operationally feasible the generation of

bus routes and schedules immediately prior to the start of the school

year when knowledge of transportation demands is most accurate. More-

over, it provides a tool for evaluating alternative new school sites in

a district experiencing significant population growth.



II. LITERATURE REVIEW

A. School Bus Routing Problem

A review of the literature concerned with school transportation

reveals that most of the studies conducted in this area deal with

standards for school buses, methods of allocating funds to school dis-

tricts for transportation purposes, surveys of the status and philosophy

of school transportation in various geographic regions, and examination

of legislation affecting school transportation. The absence of extensive

literature dealing with the school bus routing problem indicates that

either interest in this problem area is relatively recent or that a large

portion of the attempts at developing a general method for school bus

routing have proved to be fruitless and have therefore not been reported.

Dantzig, Fulkerson, and Johnson
12

gave the allusion that the problem

of using a digital computer to design school bus routes was simple and

straightforward. Intrigued by this, Boyer
5

attempted to solve a five

stop school bus problem by applying the simplex algorithm. Because the

application of a linear programming technique to the problem seemed to

be highly impractical, he developed the Sequential Steps Method5. This

procedure is based upon the premise that all students should be tran-

sported the shortest possible distance to school. Each route starts at

the bus stop which is the farthest distance from the school and proceeds

along the shortest path to the school in such a manner that no isolated

bus stops are created and that a bus stop is assigned to only one route.

Thompson
34

tested the effectiveness of the Sequential Steps Method

in determining school bus routes for a hypothetical school. He learned

that although student riding time was lowered, this method tended to

generate more routes for a school than other manual methods favored by



the transportation personnel participating in the study. Although this

method was sequential, it was not amenable to computer programming.

Moreover, it made no provision for imposing bus capacity and passenger

riding time constraints.

Boyer6'7 described a procedure for designing school bus routes in

which a set of bus routes or a route system is developed manually. A

computer is then used to list all possible ways in which the stops of a

bus route can be visited. By inspection, the best permutation for each

individual route of the route system is determined. After several

arbitrary route systems have been analyzed in this manner, the best

route system is selected.

Since this method requires a great deal of manual work and personal

judgement, it offers little improvement over the current manual methods

of designing bus routes and schedules. Moreover, this method makes no

provision for imposing .a passenger riding time constraint.

Tillman35 applied the technique of dynamic programming to the school

bus routing problem in which all routes start and end at the school. In

this, formulation stage j was the number of the bus being loaded or the

number of the route being designed, the decision variable was the number

of stops made by bus j or the number of stops assigned to route j, the

stage input was the number of stops not yet serviced at stage j, and the

return obtained at each stage was the minimum number of miles traveled

by bus j. The, objective was, to minimize the sum of the returns subject

to a bus capacity. constraint. Using this method, an optimum solution

was obtained for a problem involving five bus stops, three buses, and

forty students.

Although dynamic programming guarantees an optimal solution and



alloWs the interstop travel time matrix to be asymmetric, it is an

impractical method because of the extremely large number of calculations

which have to be performed for even relatively small school bus routing

problems.

Newton and Thomas
29

'
30 described a practical method for generating

school bus routes and schedules by computer. Given the matrix of inter-

stop travel times, which may be asymmetric, bus routing is accomplished

by a two step procedure. First, a single near-optimal route which starts

at the school, visits every stop once, and terminates at the school is

determined. This route, the solution of the traveling-salesman problem

associated with the given set of bus stops, is then partitioned into

individual bus routes which satisfy bus capacity, bus loading policy,

and passenger riding time constraints. The order of the route determined

in step one is preserved during the partitioning process and all routes

originate and terminate at the school. This heuristic procedure has

been used to solve an eighty stop problem in approximately six minutes

on 'a 7090 computer.

Davis
15 described a branch and bound algorithm for solving the

school bus routing problem in which the interstop travel time matrix is

symmetric, bus capacity and passenger riding time constraints are imposed,

and all routes start and end at the school. This procedure partitioned

the set of all possible routes into mutually exclusive subsets of routes

by solving a series of transportation problems. The cost of each sub-

set was the total traveling time required by the optimum solution to the

transportation problem associated with the subset.

Although this method is amenable to computer programming and guaran-

tees an optimal solution, it proved to be an impractical one. For

6



example, an attempt to solve a thirteen stop bus problem, whose interstop

travel time matrix was symmetric, subject only to a bus capacity con-

straint from
14

was abandoned when no feasible solution was obtained after

approximately eighteen minutes CDC 6500 time had been spent on the

problem.

B. Delivery Problem

Considerably more information is available on the closely related

1,8,9,10,14,16,18,21,36.
delivery problem The delivery problem is concerned

with the determination of routes for a vehicle, initially located at a

depot, which visits a number of delivery or pickup points and returns to

the depot. Since the capacity of the vehicle is less than the total

quantity of goods which must be transported, several trips must be made.

The delivery problem usually is not subject to a traveling time or dis-

tance constraint whereas the school bus routing problem is nearly always

constrained by both bus capacity and maximum allowable student riding

time.

Balinski and Quandti formulated the delivery problem as an integer

programming problem. Although this method guarantees an optimal solution,

it is undesirable because of the large number of variables and constraints

required to express a delivery problem involving relatively few stops.

Moreover, the available integer programming algorithms are often unable

to achieve solutions to even moderately large problems even though

theoretically they should always determine the optimum solution.

Hayes
21

applied the branch and bound method of Little, Murty, Sweeney,

and Karel
27

to the delivery problem. This procedure partitioned the set

of all possible routes into mutually exclusive subsets by either assign-

ing or not assigning a particular link to a route. The cost of each

7



subset was the minimum possible total length of any set of routes contain-

ing the link assignment associated with the subset.

Although this method guarantees an optimilaolution and ie amenable

to computer programming, it also is an impractical method because a large

number of time consuming operations must be performed. For example, an

attempt to solve the thirteen stop problem from
14

was abandoned when no

solution was obtained after one hour was spent on the Control Data G-21

computer.

Dantzig and Ramser
14

described a heuristic procedure for solving the

delivery problem when all trucks have the same capacity. After the

delivery points are arranged in numerically ascending order with respect

to demand and the number:of stages. required to,aphieve solution has been

calculated, this algorithm synthesizes.routeabyjs stage -wise aggregation

of the .delivery points, i.e. in stageone,peirs,ofpoints. are. J01.sed, in

stage. K, groupa.of Kpoints.ere joined to other groups...of K points. At.

each stage the points are combined in such a manner that truck capacity

is not exceeded and the.sum of the interstop distances Is minimized.
,

.

..:Although this methOd is sequential and,amenable toe0MPLI.ter...Pr97"

,gramming,personal judgement may beirequiredin. adjusting the, final,

solutionwhich may not be uniquely defined.....MOrpover.this procedurg,

places more emphasis on.insuring.that the trucks are loaded to capacity

than on minimizing.the total distance traveled. It also appears that

this algorithm would require considerable, alteration to, handle,

.asymmetric case because. direction is considered when the: interstop

distance matrix is searched to, determine, the minimum entry. This method

W141dprobablybequitetimaconsumingin,solvingPrOlems:x1111.01 involve

morethan20-30 stops. !ach entry, of the distance tAble in stage K,



where K s 2,3,...,N and N is the number of stages required, contains the

shortest route which starts at the depot, visits 2K points and returns to

the depot. Therefore, many traveling-salesman problems must be solved at

each stage. For example, if after 2 stages 100 stops are aggregated into

25 groups of 4 stops each, then the distance table for stage 3 requires

the solution of 300 traveling-salesman problems of 9 stops.

Clarke and Wright9 described a heuristic procedure for solving the

delivery problem when all vehicles do not have the same capacity. After

the demand points are arranged in numerically ascending order with

respect to distance from the origin, the algorithm assigns each stop to

one vehicle or route. Then each pair of points is examined to determine

the savings which would result if they were linked together on the same

route instead of being assigned to different routes. A savings calcu-

lation is made only for those points, currently linked to the origin,

which could be assigned to the same route without violating vehicle

capacity constraints. The two points associated with the maximum savings

are then assigned to the same route. After repeating the procedure

until no further savings can be calculated, the resulting set of routes

is the solution to the problem.

This method is amenable to computer programming and appears to be

efficient for solving the delivery problems in the literature. However,

it cannot be readily extended to handle the case of the asymmetric

interstop distance matrix because direction is not considered in calcu-

lating the savings or the criterion for accepting or rejecting the

linkage of two points on the same route. Moreover, the largest problem

for which solution success with this method has been reported is one

involving thirty-two stops18.

9



'Cochran10'36;made two modifications to the algorithm of Clarke and

Wright. The first Change permits the reassignment of vehicles to in-

diVidual routes each time a vehicle becomes available as a result of the

linkage of two points on the same route. The second change allows an

upper bound to be placed upon the length of any route. Although the

first modification insures that the vehicles will be more fully utilized

And the second modification is a useful one, neither the probability of

reaching optimality nor the efficiendy'of the algorithm is increased by

their in:elution.

Braun8 described a simulation apptoach to the delivery problem.

First;Aelivety points are randomly assigned to an individual route eub-

jectto the vehicle capacity constraint. Each route is then improved

by applying a traveling-salesdan algorithm. After a specified number of

sett 'of routes-are developed in this manner, the set which covers the

least numbet of miles is selected as the tolUtiOn.

AlthoUgh this prodedureAS simple and amenable to computer pro-

gramMing it proved to be less efficient than other available methods

with respect to the qUality of the routes produced and the amount of

computer time required to achieve solution. Mereover, the quality of

the sets' Of routes tends to become poorer as the number of delivery

points indteasit'.

After abandoning the branch and bound method for solving the

delivery probleM, Hayes21 developed a computerized version of a procedure

which an experienced ditpatcher might employ for routing' trucks. Since

thii method assumet that the warehouse Or depot it-located near the

ceniet-Of'ihe'seattei of customers and PeiformS poorly when thit assump-

tion is not satisfied, it does not appear.to be superior to the available

10



heuristic methods.

Gaskell
18

reported on his experiments with the method of Clarke snot

Wright
9

. He devised five functions for calculating the savings which

would result from linking two points on the same route. After applying

each of them to a set of delivery problems, he concluded that none was

uniformly better and that the function used by Clarke and Wright to

calculate savings was a reasonable one.

Although more work has been done on the delivery problem, success-

ful solution has been reported only for relatively small problems with

no indication of apparent near future breakthroughs for larger problems

involving asymmetric interstop time/distance matrices, routes whose

origin and terminus do not coincide, and restrictions upon the length

of a route, vehicle capacity, and the number of routes used to service

all the stops. Indeed, solution success on the school bus routing pro-

blem may provide a means of solving the delivery problem.

11



III. PROBLEM FORMULATION

A. Statement

Thus far, the school bus routing problem has been solved for an

environment which has been greatly simplified by the imposition of

various assumptions. Most solutions not only exclude constraints on

some of the route characteristics but also assume that the origin and

terminus of a bus route coincide, whereas in reality they are not

necessarily the same. In fact, there often may be several possible

origins for the set of bus routes servicing a particular school. There-

fore, it would be desirable to be able to judiciously select the proper

combination of origins from the set of possible origins for the system

of bus routes servicing a particular school.

With these thoughts in mind, this dissertation is concerned with

the determination of all bus routes for a school district. Buses are

routed from school to school picking up students as they travel. A

heuristic procedure has been developed and programmed in FORTRAN IV to

generate efficient bus routes when the school bus routing problem has

the following definition:

Given:

1. the number of time periods used by the school district for

bussing

2. for each time period

a. the number and location of schools to be serviced

b. the number of possible origins for the bus routes

c. the identification of each origin

d. the number of buses available at each origin at the

beginning of the period

12



3. for each school to be serviced during the same time period

a. the identification of the school,

b. the identification of each stop to be visited,

c. the number of students assigned to each stop,

d. the matrix pf interstop travel times between each

possible origin and every stop assigned to the

school,

e. the matrix of interstop travel times for all pairs

of stops except those links involving an origin,

f. the bus capacity,

g. the maximum allowable student riding time, and

h. the criterion for accepting a set of feasible routes

as the quasi-optimal solution.

Determine for each school:

1. the set of bus routes and schedules required to provide

transportation for all students either to school or from

school and

2. a lower bound on the total number of time units required

to traverse all the bus routes

such that:

1. no more than the absolute minimum number of routes required

to transport the students plus one route will be used for

any school,

2. the bus capacity and maximum allowable student riding time

constraints will be satisfied,

3. the criterion for accepting a set of feasible routes as

13



the quasi-optimal solution will be satisfied, and

4. optimizatidn will, be with respect to minimizing the total

traveling time for a set of routes.

It is assumed that:

1. all buses assigned to a particular school have the same

capacity,

2. all routes for a particular school will be subject to the

same maximum allowable student riding time constraint,

3. the matrix of interstop travel times may be asymmetric,

4. a stop is assigned to only one route,

5. the traveling time from any bus stop to the terminus Is

less than the maximum allowable student riding time,

6. the origin and terminus of any bus route do not necessarily

coincide,

7. a bus services only one route for a particular school, and

8. the number of buses available at the beginning of period i

is adequate to meet the needs of all students to be serviced.

during period i, i.e. it is possible to service all the

routes simultaneously.

B. Discussion of the Problem Statement

Most districts set the opening and closing times of the schools

serviced by the same bus fleet so that all students can be transported

during two or three non-overlapping bussing periods whose total elapsed

time is approximately two and one-half hours. Schools maintaining

common hours of operation are serviced during the same bussing period.

The data required to design the routes for each school can be

14



developed either manually or by computer from the map of the area and

the associated census.tract. Each stop serviced by the school is

usually identified by both name and number in order to facilitate com-

munication between the administrators and the bus drivers. The elements

of the interstop travel time matrix are calculated from a map of the

area so that they include the effects of both distance and expected driving

conditions in traveling between every pair of points. Often in an effort

to reduce the size of the interstop travel time matrix, bus stops ad-

jacent to each other on the same side of the road are combined into a

single stop. The information required to assign students to a bus stop

can be extracted from the census tract. Usually upper limits are im-

posed upon the number of students assigned to a bus stop in order to

reduce the noise level and the possibility of landscape damage in

residential areas.

Optimization is with respect to not only minimizing the total time

required to traverse a set of routes but also with respect to minimizing

the number of routes required to transport all the students of a

particular school. Both of these factors contribute heavily toward the

operational costs of maintaining a bus fleet. Minimizing the number of

routes insures that the buses are being utilized to full capacity and

also tends to reduce the total traveling time associated with a set of

routes by eliminating some of the links between an origin and the first

stop of any route and the links between the last stop of any route and

the terminus. Since schools usually place more emphasis on minimizing

the number of routes required to transport all the students than on

minimizing the total traveling time for a set of routes, the maximum

allowable number of routes for a school will be considered to be a

constraint.

15



The minimum number of routes required to service all the stops

assigned to a school is the smallest integer which is greater than or

equal to the quotient of the total number of students to be transported

and the bus capacity. Since a riding time constraint is imposed on each

route and since all the students assigned to a particular bus stop have

to be picked up by the same bus in order to avoid confusion, it may be

impossible to service all the bus stops by the minimum number of routes.

Therefore, a set of routes is considered feasible ii each route satisfieu

the bus capacity and student riding time constraints and if the set con-

tains at most one more than the minimum number of routes reqUired to

transport all the students. Thus, a feasible set of routes contains

either the minimum number of routes or one more than the minimum number

of routes.

Because the set of bus routes for any school is designed by a

heuristic procedure, some method must be devised to determine when a set

of routes, acceptable to the school, has been developed. One possible

criterion is to accept the best set of feasible routes available after

the procedure has been executed a specified number of times. A second

possible criterion is to accept the first set of feasible routes deve-

loped whose total travel time is less than the product of a given factor,

greater than one, and the lower bound upon the total time required to

traverse all the routes for a school. Another alternative is to accept

as the quasi-optimal solution the best set of feasible routes available

at the time at which either of the criteria is first satisfied.

The lower bound upon the total time required to traverse a set of

routes fora school is the minimum length of time in which all the bus

stops could be serviced by the number of routes included in the set.

16



In calculating the lower bound, it is assumed that all connections bet-

ween,the origin and the first stop of a route, all the connections

between the bus, stops, and all the connections between the last stop of

a route and the terminus are made in the least time consuming manner.

Since the lower bound does not include the effects of the bus capacity

and passenger riding time constraints, the probability of developing a

set of feasible routes whose total traveling time equals the lower bound

is very low. However, even though the lower bound may be unattainable,

it provides some measure for assessing the quality of the set of routes

developed.

An examination of the set of assumptions under which the problem is

to be solved reveals that the environment has not been oversimplified.

The bus capacity is based upon the expected girth of children at vat anus

age levels, the stze of the bus used, and the degree of bus utilization

required by the school. The maximum student riding time is dependent

upon the size of the area, the scatter of the bus stops and the local or

state laws regulating student riding time. Usually, districts 4-.ansider

the bus capacity and the maximum riding time constraints to be fixed for

a particular school.

The interstop travel time matrix is characteristically asymmetric

for reasons such as: restrictions imposed upon the crossing of busy

streets by children, one-way streets, limited access highways, and re-

strictions imposed on vehicle turns at intersections. Moreover, most

schools maintain a bus loading policy which requires that all students

assigned to a stop by picked up by the same bus in order to avoid con-

fusion. This restriction implies that a stop is assigned to only one

route.

17



The traveling time from any bus stop to the terminus has to be less

than the maximum allowable. student riding time in order to insure that

no bus stop tr. isolated. The assumptions that a bUs services only one

route for a school and that it is possible to service all the routes

simultaneously are imposed in order to facilitate the computational pro-

cedure Used to develop all the bus routes for a district and do not

simplify the environment. Thus this formulation of the school bus

routing problem is considered to be a realistic and a reasonable one.

18



C. Mathematical Model

The bus routing problem for any school, as previously defined, can

be expressed as a zero-one integer programming problem.

Let i = origin of any link

j = terminus of any link

k = number of any possible bus origin

m = route number

K = number of possible different bus origins for a set of

routes

M = number of routes allowed for the school

N = total numb-r of bus stops (includes the origin and

the terminus) assigned to the school

stop 1 (k) = bus origin number k

stop N = terminus of any route or the school

t(i,j) = number of time units required to travel between

bus stop i and bus stop j

L(j) = number of students assigned to bus stop j

B(k) = number of buses available at origin k

C:= bus capacity

R = maximum allowable student riding time

x(ivi'm) (-1, if link (i,j) is assigned to route m

10, otherwise

The subscript denoting the particular school has been omitted in order

to simplify the nomenclature. The words bus and route are used inter-

changeably.

The problem can be stated as follows:

Find variables x(i,j,m) for all combinations of i, j, k and m where
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i = 1(k),2,..., (N-1)

j=

k = 1,2,...,K

m = 1,2,...,M

such that the objective function

N K M

L Et(1(k),j)][x(1(k),j,m)]

j=2 k=1 m=1

(N-1) N m

E E Et(i,i)][x(i,bro]
i=2 j=2 m=1

is minimized while restrictions one through eight, stated below, are

satisfied.

Optimization, as previously stated, is with respect to not only

minimizing the total time required to traverse a set of routes but also

with respect to minimizing the number of routes required to transport

all the students of the school. Since it is difficult to work with

two objective functions, and since most schools place greater emphasis

on the minimization of the number of routes than on the minimization

of the total traveling time, the number of routes required to transport

all the students of a school will be considered a constraint and the

objective function will involve the total traveling time only. The

first term of the objective function is the total time spent in

traveling from the origin to the first stop of any route; the second

term is the total time spent in traveling between the other pairs of

points.



The first constraint,

K M (N-1) M

x(l(k),j,m) 2., 2, x(i,j,m) . 1, for j = 2,3,...,(N-1),

k=1 m=1 i=2 m=1

insures that any bus stop j, where j is not the origin or terminus of

any route, will be the terminus of exactly one link on one route. There

Will be (N -2) constraints of this type.

The second constraint,

N M

x(i,j,m) = 1, for i = 2,3,...,(N-1),

j=2 m=1

insures that bus stop i, where i is not the origin or terminus of any

route, will be the origin of exactly one link on one route. There will

be (N -2) constraints of this type.

The third constraint,

(N-1) K M

x(1(k),j,m) = M,

j=2 k=1 m=1

insures that only M routes are used by counting the number of links

between the origin of each route and the first stop serviced by the

route.

The fourth constraint,

(N-1) M

i=2 m=1

x(i,N,m) = M,

also insures that only M routes are used by counting the number of
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links between the last stop serviced by a route and the terminus or

school.

The fifth constraint,

(N-1) M

x(1(k),j,m) s B(k), for k = 1,2,...,K,

j=2 m=1

insures that the number of routes starting at a particular origin does

not exceed the number of buses available at that origin for the school.

There will be K constraints of this type.

The sixth constraint,

(N-1) K (N-1)(N-1)

L 2, [x(i(k),J,m)][1,(j)] 2, [x(i,j01)][1,(j)] s C,

j=2 k=1 i=2 j=2

for m = 1,2,...,M, insures that the bus capacity will not be exceeded

by any route. The first term of the constraint counts the number of

students picked up at the first bus stop serviced by the route and the

second term counts the students picked up at the other stops assigned

to the route. There will be M constraints of this type.

The seventh constraint,
(N-1) N

2, L [t(i,J)][x(i,i,m)] s R, for m =

i=2 j=2

insures that no route will exceed the maximum allowable student riding

time where the riding time is counted from the first pick-up point.

There will be X constraints of this type.

The eighth constraint,
(r-1)

xcip,ip+1,0 + x(ieil,m) s (r-1), for m = 1,2,...,M,

p=1
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where i
r

ranges over all permutations of subsets of the bua

stops 32,3,...,(N -1)} of size r, and 2 5 r s (N-1), prevents the for-

mation of a loop, a route which starts and ends at the same point.

(N-2)

There will be M P
(N-2)

constraints of this type where P denotes the

k=2

CN-2)
(N-2)

permutation of z things taken x at a time. Since P is

k=2

greater than 2(N-2):, there will be more than 2M(N-2): constraints of

this type. None of the permutations involve the origin or terminus

because no link is allowed to start at the terminus and no link is

allowed to end at the origin in the case of the general route whose

origin and terminus do not coincide. This is accomplished by setting

the travel times associated with these links equal to infinity, i.e.

the elements of column one and row N of the interstop travel time

matrix are assigned large values. To illustrate the manner in which

the eighth constraint prevents the formation of a loop, let r = 2,

m = 4, i1= 3, i2 = it = 5, x(3,5,4) = 1, x(5 3,4) = 1 and the rest of

the variables, x(i,j,4) equal zero. In this example, route four starts

at stop three, proceeds to stop five, and then returns to stop three.

According to the eighth constraint, x(3,5,4) + x(5,3,4) = 2 = r and

route four is a loop.

This zero-one integer programming model would have to be solved

twice. First, it would be solved for X equal to the minimum number of

routes required to transport all the students of the school and then

for M equal to one route plus the minimum number of routes required by
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the school.

Since i may assume any of (K +N -2) values, j any of (N-1) values

and m any of M values, there are (K+N-2)(N-1)(M) variables, x(i,j,m),

in this problem. Moreover, there are more than 2M(N-2): constraints.

A normal bus routing problem for one school involving ten origins,

twenty routes and one hundred bus stops would require 213840 variables

and more than 40(98)! constraints. Since the available integer pro-

gramming algorithms are clearly unable to handle problems of this

magnitude, a heuristic procedure is the only recourse for developing

all the bus routes for a school uistrict.
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IV. METHOD OF SOLUTION

A. General Procedure

Bus routing for a school district is accomplished by suboptimiza-

tion from period to period. Bus routing for a period is accomplished

by suboptimization over the sets of routes developed for each of the

schools serviced during the, eriod. Quasi-optimal bus routing for an

individual school is accomplished by an algorithm based selective

enumeration procedure. A detailed description of each step of this

enumeration procedure is given in the following sections. It can be

summarized as follows:

1. Assuming that the maximum allowable number of routes will be

used by all schools, determine for every school the number

of bus routes which should start from each origin supplying

buses for the period during which the school is being

serviced so that the total estimated traveling time required

by all the routes for the period is minimized.

2. For each school, select the location which serves as the

origin for the greatest number of routes as determined in

step one. This point will be called the "super-origin" for

the school.

3. Determine by either using the Nearest City Approach or

Algorithm A, a trial route which starts at the super-origin,

visits every stop once and terminates at the school. The

method used to develop this trial route is dependent upon

the number of times step three has been executed.

4. Partition the single route determined in step three into
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individual routes which satisfy bus capacity and passenger

riding time constraints. The order of the stops determined

in step three is preserved during the partitioning process.

5. If the set of routes contains no more than the maximum

allowable number of routes, then proceed to step six.

Otherwise, return to step three to generate a different

trial route.

6. Improve each of the individual routes by Algorithm A, a

modified traveling-salesman type algorithm. This step

attempts to reduce the traveling time required by the

individual route while preserving the assignment of stops

to the route made by the partitioning procedure.

7. Determine the current best set of routes developed by the

procedure.

8. If the set of routes obtained in step seven satisfies the

acceptance criterion specified by the school, then proceed

to step nine. Otherwise, repeat steps three through eight

until either the acceptance criterion is satisfied or the

algorithms used to generate the trial route in step three

are exhausted, i.e. they are unable to generate another

different trial route.

. If the results of step one specify that all the routes for

the school should start at the super-origin, then this

acceptable set of routes is considered to be the quasi-

optimum solution. Otherwise proceed to step ten.

10. Allocate the remaining origins specified by step one in

such a way that the additional number of time unit3 traveled
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will be minimum. Then, this modified set of acceptable

routes is considered to be the quasi-optimum set of routes

for the school.

After bus routing has been completed, the schedule or timetable

for each individual route is calculated. Each schedule gives the bus

load and the arrival time at each stop serviced by the route. The

time required to load the bus at each stop and to unload the bus at

the school is not included in calculating the timetable. In addition,

a lower bound upon the total number of time units required to traverse

all the routes required by the school is calculated.

B. Selection of Bus Route Origins

At the beginning of the first bussing period all buses are

located at the garage(s) maintained by the school district. For all

other bussing periods the available buses are initially located at the

schools serviced during the previous period. It is assumed that the

number of buses available at the beginning of any bussing period is

adequate to meet the needs of all students to be transported during

the period, i.e. it is possible to service all the routes for the

period simultaneously. For each school j serviced during the same

period, the determination of the number of bus routes which should

start at each origin i can be expressed as a transportation problem.

Let n1 = number of origins supplying buses for the period

n2 = number of schools serviced during the period

x(i,j) = number of routes starting at origin i and ending

at school j

j) = average estimated time required to traverse any
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route starting at origin i and ending at school j

A(i) = number of buses available at origin i at the

beginning of the period

R(j) = number of routes required by school j

B(j) = bus capacity specified by school j

The problem can be stated as follows:

Find variables x(i,j) for all combinations of i and j, where

i =1,2 ..... nl and j = 1,2,...,n2, such that the objective function

nl n2

cc(i,i)] [x(i,j)J

i=1 j=1

is minimized and restrictions one through four, stated below, are

satisfied. Optimization is with respect to minimizing the total

estimated traveling time required by the n2 sets of routes associated

with the period.

The first constraint,

y(i,j)... R(j), for j = 1,2,...,n2,

i=1

insures that all the routes required by school j are assigned to an

origin. There will be n2 constraints of this type.

The second constraint,
n2

x(i,j) = A(i), for i = 1,2,...,n1,

j=1

insures that that number of bus routes starting at origin i equals

the number of buses available at origin i. It is assumed that a bus

services only one route for a schOOl. There will be n1 constraints
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of this type.

The third constraint,

x(i,j) Z 0, an integer, for all i and j,

is self-explanatory.

The fourth constraint,

n1 n2

A(i) = R(j)

i=1 j=1

insures that a feasible solution exists. It can be verified by
n2 nl

observation. Since the first constraint implies x(i,j) =

j=1 iZi

n2 n2 nl

R(j) and the second constraint implies x(i,j) =

j=1 j=1 i=1

n1

A(i), then indeed the fourth constraint must be satisfied.

1=1

ril n2

Because it is assumed that A(i.) R(j) at the beginning

j=1

of any bussing period, a fictitious school may have to be introduced

to use the extra available buses in order to satisfy the fourth

constraint.

The parameters nl, n2, A(i), and B(j) are given data for the

problem. However, the parameters R(j) and c(i,j) for i = 1,2,...,n1

and j = 1,2,...,n2 must be calculated. The R(j) are determined

as follows:

Let L(j,k) = number of students assigned to stop k

associated with school j

n(j) = number of stops assigned to school j

(including the origin and terminus)
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m(j) = minimum number of routes required to transport

all students of school j

The values of L(j,k) and n(j) where j = I,2,...,n2 and k = 1,2,...,n(j)

are given data for the problem.

n(j)

m(j) = I L(j,k),//4(j) + 0.999999 truncated to the

k=1

nearest integer.

R(j) = m(j) + 1, for j = 1,2,...,n2

The parameter R(j) is used in the determination of the number of

routes which should start at origin i for school j instead of m(j)

because the bus capacity and student riding time constraints often

make the generation of a set of feasible routes containing only

m(j) routes unattainable.

The c(i,j) are calculated as follows:

Let LB(i,j) = lower bound on the total traveling time required by

R(j) routes, all of which start at origin i and end

at school j

c(x i) = LB(i,j) / R(j) for i = 1,2,...,n1 and j =

The LB(i,j) are calculated under the assumption that all the

connections between origin i and the first stop of each of the R(j)

routes, all the connections between the pairs of bus stops, and all

the connections between the last stop of each of the R(j) routes

and the terminus are made in the least time consuming manner. A

computational procedure for determining the lower bound upon the

total traveling time of a set of routes is described in section V-B.
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The c(i,j) are based upon a lower bound instead of an upper bound

because an attempt i 'being made to develop a set of routes whose

total traveling time approaches this lower bound.

c(i,j) = 0 when uchool j is a fictitious school.

The origin associated with the maximum x(i,j) for school j is

defined to be the super-origin for school j. In case of a tie, the

super-origin is selected arbitrarily.

The allocation of a number of routes for school j to origin i

and the selection of a super-origin for each school serviced during

the same period is determined once.

C. Determination of Trial Routes: Nearest-City Approach

A trial route which starts at the super-origin, visits every

stop once, and terminates at the school, the route that an infinite

capacity bus would traverse, is determined either by the Nearest City

Approach or by Algorithm A discussed in the next section. The Nearest

City Approach can be described as follows:

Let n = number of stops assigned to the school (including

origin and terminus)

stop 1 = origin of route

stop n = terminus or school

r = number of the trial route being generated

where r = 1,2,...,(n-2).

The subscript denoting the particular school has been omitted in

order to simplify the nomenclature.

This trial route generated is one in which an "infinite capacity"

bus starts at the super-origin, proceeds to stop (r1-1) and then
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repeatedly selects as its next stop that point which is nearest to its

present stop and which has not yet been serviced until it reaches the

terminus or school. The current best trial route, the one requiring

the least traveling time, is determined and saved each time that this

process is executed. Since this procedure specifies the first bus

stop visited, a different trial route is generated each time. If the

acceptance criterion has not been satisfied after (a-2) trial routes

have been generated, then Algorithm A is used to develop succeeding

trial routes from the best trial route previouSly determined,

D. Determination of Trial Routes: Algorithm A

Algorithm A, a systematic procedure for decreasing the total

time required to traverse the infinite capacity bus route, is an

extension of Algorithm 1 developed by the author
29,30.

After the

Nearest City Approach has been exhausted, the trial routes are

generated by applying Algorithm A to the best infinite capacity bus

route available. Initially Algorithm A is applied to the best

route determined by the Nearest City Approach. Thereafter, Algorithm

A is applied to the most recent trial route it generated.

This algorithm determines sets of three links which can be

changed simultaneously without destroying the continuity of the tour,

the non-coincidence of the origin and the terminus of the route, and

the direction of the unchanged portions of the route. The latter

constraint is necessary, because the procedure is applicable to non-

symmetric as well as symmetric problems. If the time required to

traverse the three new links is less than the time required to

traverse the links which they replace then the new route becomes the
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next trial route and the best infinite capacity bus route available.

If the proposed change results in no improvement, then another set of

changes is determined and examined. Algorithm A is repeated until it

is unable to improve the best trial route available, i.e. Algoritha A

is exhausted.

The sets of three link changes in the current tour through a

network of n points or stops in which the origin and terminus do not

coincide are generated as follows for all combinations of i and j

where 1 5 i 5 (a-1), 2 5 j 5 (n-1), stop 1 is the super-origin

and stop n is the terminus or school:

1. New link 1 starts at point i and ends at point j where

ij and point j the point which follows point i in the

current tour.

2. New link 2 starts at point k and ends at the point which

follows point i in the current route where kn.

k is cycled as follows:

point jpoint k
1

=

point k
2

=

point kL =

point which follows point j in the

current route

point which lies (L-1) consecutive

positions after point j in the current

route in a clockwise direction

point km .= point which precedes point i in the

current-route

In order.to determine the complete range of values for

index k associated with a particular i,j combination, it
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is necessary to assume the existence of a fictitious link

between the terminus and origin of the current route while

counting the consecutive positions after point j in a clock-

wise direction.

3. New link 3 starts at the point which precedes point j in the

current route and ends at the point which follows point k in

the current route.

For illustrative purposes, Algorithm .A will be applied to a route

containing six points for one cornbinatior of i and j and the entire

range of index k associated with it. Point one is the super-origin

and point six is the terminus or school. The number associated with

each node is the permanent identification number of the stop area

corresponds to its position in the interstop travel time matrix, eg.

stop four data would form row four of the interstop travel time

matrix.

Let i = 2 and j = 3 be the i,j combination

Ro = 1-4-2-5-3-6 be the current route

1

4
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The first value assumed by k is the number of point j or three.

The proposed route is R1 = 1-4-2-3-5-6. Links 2-5, 5-3, and 3-6 are

replaced by new links 2-3, 3-5, and 5-6, indicated by the dashed arcs.

1

4 2

Ye 5

I'
6 3

The second value assumed by k is the number of the point which

follows point j or six. However, no new route can be proposed by

Algorithm A for this combination of i,j, ane k because the value

assigned to index k is the number associated with the terminus of the

route. Since k has not yet assumed the value of the identification

number of the point preceding point i in the current route, four, the

cycle for index k is incomplete.

The third value assumed by k is the number of the point which

lies two consecutive positions after point j, in a clockwise

direction, or one. The proposed route is R2 = 1-5-4-2-3-6. Links

1-4, 2 -5, and 5-3 are replaced by new links 1-5, 5-4, and 2-3.

4 2

6 3
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The fourth value of k is the number of the point which lies three

consecutive positions, in a clockwise direction, after point j in the

current route or four. This is the last k which can be generated for

the combination i = 2 and j = 3 because the point numbered four

precedes point i in the current route. The proposed route is

R
3
= 1-4-5-2-3-6. Links 4-2, 2-5, and 5-3 are replaced by new links

4-5, 5-2, and 2-3.

4 2

04011-t
6 3

5

When Algorithm A cannot improve the best trial route available,

it is said to be exhausted. This best trial route which Algorithm A

cannot improve is considered to be the quasi-optimal modified

traveling-salesman route and the last possible trial route. A

computational procedure for Algorithm A is described in section

V-A.

E. Partitioning Procedure

The partitioning procedure is applied to every trial infinite

capacity bus route determined by either the Nearest City Approach or

Algorithm A. This procedure requires the following additional

information:

1. a student load vector specifying the number of students
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assigned to each stop,

2. the bus capacity, and

3. the maximum allowable riding time of the students picked up

at the first stop of any route.

The partitioning procedure generates a set of bus routes each of

which starts at the super-origin, visits the stops of the trial

infinite capaciLi bUs route in the order previously determined until

the bus is loaded properly and proceeds to the terminus or school.

At each stop, the bus load count is incremented by the appropriate

element of the student load vector and the time tally is incremented

by the tt.aveling time from the previous stop. When either the bus

capacity or the riding time constraint is about to be exceeded, the

previous stop becomes the last one serviced by the bus before

proceeding to the school. The next route starts at the super-origin

and proceeds directly to that stop of the trial infinite capacity

bus route which immediately follows the last stop serviced. All

individual bus routes are determined in the same manner. The

sequence of stops generated by either the Nearest City Approach or

by Algorithm A is preserved throughout this procedure. If the set

of routes determined by the partitioning procedure contains no more

than the maximum allowable number of routes, then the improvement

prOcess, described in the next section, is applied to each route of

the set. Otherwise, another trial infinite capacity bus route is

generated by either the Nearest City Approach or Algorithm A.

F. Improvement Process

Each individual route belonging to a feasible set of routes
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developed by the partitioning procedure is then improved by application

of Algorithm A, previously described in section IV-D.

First, form a submatrix of the given interstop traveling time

matrix consisting of those elements associated with the super - origin,

the stops serviced by the individual route, and the terminus or school.

The infinite capacity bus route corresponding to this submatrix is

the individual route being improved. Then Algorithm A is applied to

this route until it can make no further improvement. This two step

procedure is repeated until all the individual bus routes of the

feasible set have been improved. The given matrix of interstop travel

times between each possible origin and every stop assigned to the

school and the given matrix of interstop travel times for all pairs

of stops except those links involving an origin are preserved at all

times.

G. Acceptance Criteria

The best available set of routes, all of which staL: at the

super-origin, for a particular school j will be considered to form

the basis of the quasi-optimal solution if one of the following

criteria is satisfied:

1. The total time required to traverse this set of routes is

less than or equal to the product of a factor specified by

the transportation director, greater than one, and the

lower bound on the total time required to traverse the

number of routes contained in the best available set of

routes, assuming that all of them start at the super-origin.

2. The total number of trial routes generated is about to
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exceed some number specified by the transportation director.

Thus, the school administrator has an opportunity to specify the

degree of optimality required for the set of routes accepted as a

final solution. In the event that neither of the criteria are

satisfied and no further trial infinite capacity bus routes can be

developed because both the Nearest City Approach and Algorithm A have

been exhausted, then the best available set of routes will become the

basis of the quasi-optimal solution by default. The latter situation

is one in which the capability of the method is unable to satisfy the

requirements of the school.

H. Final Allocation of Origins to Individual Routes

The feasible set of individual bus routes which satisfy the

acceptance criterion specified by 'school j all start at the super-

origin.: If all the routes for school j should start at the super-

origin, as previously determined, then a final allocation of origins

to individual routes is unnecessary. However, if all the routes for

school j do not start at the super-origin, then the remaining origins

are allocated in such a way that the additional number of time units

traveled will be minimum. This final allocation problem can also be

expressed as_a transportation problem.

Let nl = number of origins supplying buses for the period.

n3(j) = number of routes belonging to the feasible set of

routes satisfying the acceptance criterion

specified by school j

x(i,j) = number of routes which should start at origin i

and end at school j



d(i,j,k) = total traveling time of route k assigned to

school j when it starts at origin i

y(i,j,k) = 1 when route k assigned to school j starts

qt origin i

otherwise

The problem can be stated as follows:

Find variables y(i,j,k) for a fixed j and all combinations of i and k,

where i = 1,2,...,n1 and k = 1,2,...,n3(j), such that the objective

function

nl n3(j)

X I [ d(i,j,k)] [Y(i2j,k)]

i=1 k=1

is minimized and restrictions one through four, stated below, are

satisfied. Optimization is with respect to minimizing the total

traveling time required by the n3(j) routes accepted by school j.

The first constraint,

nl

y(i,j,k) = 1, for k = 1,2,...,n3(j),

i=1

insures that a route is assigned to only one origin. There will be

n3(j) constraints of this type.

The second constraint,

n3(j)

y(i,j,k) = x(i,i), for i = 1,2,...,n1

k=1

insures that the number of bus routes starting at origin i equals
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the number of cruses previously assigned to school j from origin i.

There will be nl constraints of this type.

The third constraint,

y(i,j,k) = 0 or 1, for all i and k,

is self-explanatory.

The fourth constraint,

nl

x(i, j) = n3(j)

i=1

insures that a feasible solution exists. Since the first constraint

n3(j) nl n3(j)

implies y(i,j,k) = 1 = n3(j) and the second

k=1 i=1 k=1

nl n3(j) nl

constraint implies X y(i,j,k) = x(i,j), then indeed

i=1 k=1 i=1

nl

the fourth constraint must be satisfied. Since x(i,j) equals the

i=1

nl

maximum allowable number of routes and n3(j) 5 x(i,j), a

i=1

fictitious route may have to be introduced to use the extra available

bus.in order to satisfy the fourth constraint.

The parameter nl was given; the parameter n3(j) was determined

by the partitioning procedure described in section IV-E. The values
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of x(i,j), the number of bus routes which should start at origin i

and end at school j, were determined by solving the transportation

problem described in section IV-B. The d(i,j,k) are calculated as

follows:

Let t(s,j,k) = total time required to traverse route k when it

starts at the super-origin and ends at school j

1(s,j,k) = traveling time between the super-origin and the

first stop serviced by route k associated with

school j

1(i,j,k) = traveling time between origin i and the first

stop serviced by route k associated with

school j

d(i,j,k) = t(s,j,k) - 1(s,j,k) 1(i,j,k)

d(i,j,k) = 0 when k is a fictitious route.

After the final allocation of origins to the individual bus

routes for school j has been completed, a lower bound upon the total

traveling time of the number of routes required by school j is

calculated. This procedure is described in section V-B.
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V. COMPUTATIONAL PROCEDURE

A. Algorithm A

A computational scheme for Algorithm A is described by the flow

chart given in Figure 1. The nomenclature used in the flow chart is:

N = total number of bus stops (including the origin and

the terminus)

= a square matrix of order (N+1) composed of an NxN

interstop travel time matrix augmented by an

additional row and an additional column

M(I,J ) = number of time units required to travel from bus

stop I to bus stop J: 1 s I s N, 1 s J 5 N, I J

M(I,I) = number of time units required to travel from bus

stop I to the stop which immediately follows it in

the current modified traveling-salesman route

M(I,N+1) = identification number of the bus stop which im-

mediately follows bus stop I in the current

modified traveling-salesman route

M(N+1,J) = identification number of the bus stop which im-

mediately precedes bus stop J in the current

modified traveling-salesman route

M(N+1,N+1) is not used

01 = origin of new link 1

T1 = terminus of new link 1

02=origin'of new link 2

T2 = terminus of new link 2

03 = origin of new link 3
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T3 = terminus of new link 3

The first row of [M] is related to the origin and row N is related to

the terminus of the modified traveling-salesman route.

Blocks 1-4 provide for the initialization and incrementation of

index I and index J.

Blocks 5-6 prevent the creation of an illegal combination of I

and J. Block 5 prevents a change in which indexes I and J are identical.

Block 6 prevents a change in which stop J immediately follows stop I in

the current tour and thereby eliminates the possibility of generating

a new route that is identical to the old one.

Block 7 initializes the origin and terminus of each of the three

new links associated with the current I,J combination.

Block 8 calculates the time required to traverse the three old

links which are candidates for replacement and the time required to

traverse the proposed new links.

Block 9 determines whether the proposed set of new links reduces-

total transit time.

Block 10 tests whether index k, the origin of new link 2, has

assumed all possible values for the current combination of indexers I

and J.

Block 11 tests whether the next value of index k would be the

identification number assigned to the terminus of the current route.

Block 12 determines whether it would be possible to assign another

value to index k by introducing a fictitious link between the terminus

and origin of the current route.

Block 13 calculates the new value of index k, the origin of new
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link 2 as described in Section IV-D, and the terminus of new link 3

when index k does not assume the value of the identification number of

the terminus of the current route.

Block 14 calculates the new value of index k, the origin of new

link 2, and the terminus of new link 3 after a fictitious link was

assumed to exist between the origin and terminus of the current route.

Blocks 15-16 determine whether indexes I and J can be further

updated. If I cannot be updated, then Algorithm A has been executed

for all possible combinations of I and J. If Algorithm A is exhausted

while it is being used to generate a trial infinite bus capacity route

prior to execution of the partitioning procedure, then the best avail-

able set of routes will have to be accepted as the quasi-optimal

solution for the school. Exit will be to the final allocation of

origins procedure. If Algorithm A is exhausted while it is being used

to improve an individual bus route, then exit is to the improvement of

the next route of the set.

Block 17 incorporates the three new links, that have been found to

reduce total transit time, into the current modified traveling-salesman

route by altering row (N +1) and column (N+1) which store the sequence

of stops in the new tour and by inserting the new transit times into

the main diagoral elements. If Algorithm A produces an advantageous

change while it is being used to create a new trial infinite capacity

bus route, then exit is to the partitioning procedure. If Algorithm A

is being used to improve an individual bus route when an advantageous

change occurs, then Algorithm A is restarted and exit is to Block 1.
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B. Lower Bound

The lower bound on the total time required to traverse the set of

routes accepted as the quasi-optimal solution by the school is calculated

under the assumption that all the connections between an origin and the

first stop of any route, all the connections between the pairs of bus

stops, and all the connections between the last stop of any route and

the terminus are made in the least time consuming manner.

Let N = total number of bus stops (including origin and terminus)

M = rectangular matrix with (N-1) rows and N columns

M(I,J) = number of time units required to travel from bus stop

I to bus stop J: 2 s 15 N, 1 s J s N, I J

N1 = number of origins supplying buses for the school

M1 = rectangular matrix with N1 rows and N columns

Ml(K,J) = number of time units required to travel from origin K

to bus stop J: 1 5 K 5 N1, 1 5 J 5 N

NR(K) = number of routes starting at origin K: 1 s K 5 Ni

NI

Q = NMI()

K=1.

[M] is the given matrix of interstop travel times for all pairs

of stops except those links involving an origin. Since the origin of

a route is not allowed to be the terminus of a link, M(I,1) = 03 for

2 5 I 5 N. Moreover, M(N,J) = co for 1 5 J 5N because the terminus cf

a route is not allowed to be the origin of a link. These two restric-

tions are necessary because the method of solution is applicable to the

general routing problem in which the origin and terminus do not coin-

cide.
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III] is the given matrix of interstop travel times between each

origin servicing the period and every stop assigned to the school.

Since no link is allowed between the origin and terminus of'a route,

M1(K,N) = co for 1 s:K s Nl. Moreover, WI, I) = co for 2 s I s N and

Ml(K,1) = co for 1 s:K S N1 because no loop is permitted at any bus

stop.

parameters N1 and NR(K) where 1 s:K S N1 and NR(K) #0 are deter-

mined by the final allocation of origins, to routes procedure described

in Section IV-H.

The lower bound is calculated as follor.s:

1. Form [A2], a square matrix of order (Q+N -l), by the

procedure described below.

2. Reduce [M2] until there is at least one zero in every

row and column. This is accomplished by subtracting the

smallest element in each row from every element in the

row, and then subtracting the smallest element in each

column of the remaining matrix from every element in the

.1olumn. The lower bound on the final set of routes is

the total reduction or the sum of the elements subtracted

from the rows and columns.

Starting at row one, [M2] is formed as follows:

For each K, 1 s K. s N1, row K of [Ml] is stored NR(K) times

in C?4,23, i.e. each route starting at origin K contributes

one raw to [M2]. This rectangular submatrix consisting of,

Q rows and .N columns occupies the upper left portion of

[M]. During the reduction process, this submatrix provides
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that portion of the lower bound contributed by traveling

between any origin and the first stop of a route.

2. [A] is stored in rows (Q+1) through (Q+N-1) of [M2].

During the reduction process the first (N-1) columns

of this submatrix provide that part of the lower bound

contributed by traveling between any pair of pointa.

3. Steps one and two create columns one through N of [M2].

Column N is then stored (Q -1) more times in Em23,

columns N through (Q+N-1) of OM23 are the same vector

whose elements represent the time required to travel

between any bus stop and the terminus. During the re-

duction process, the submatrix occupying rows one through

(Q+N-1) and columns N through (Q+N-1) of [a] provides

that portion of the lower bound contributed by traveling

between the last stop of any route and the terminus.

When the lower bound has to be calculated for a set of routes, all

of which start at the same origin, then N1 = 1 and NR(1) = Q equals the

number of routes contained in tne aet for this procedure.
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VI. EVALUATION

Any heuristic procedure should be evaluated on two bases. First,

in order to be acceptable, the method must be reasonable with respect

to the size of the problem it can handle, the assumptions it imposes

and the logical processes it uses. Second, in order to be practical,

the procedure must be able to yield answers to the problem being

considered at a cost commensurate with the value received.

A. Model and Method

The model developed in this dissertation is a gene al one which

utilizes variables that are applicable to all school systems. Moreover,

it requires few assumption that simplify the nisi world environment.

The method used to obtain a solution for the model reduces the routing

of buses for an entire school district to a set of sequential steps that

can be readily programmed for a digital computer. Furthermore, this

set of sequential steps is arranged into groups called iterations or

passes such that a "reasonably good" feasible routing system can be ob-

tal-red a few iterations have been completed. Thus, the user of

the model and method can specify the aegree of optimality desired for

the routing system being developed.

Tha procedure used to develop a set of bus routes for each school

is logical. At the beginning of a period, the available buses at the

origins are allocated to every school serviced during the period so that

the total estimated traveling time required by all the routes developed

for the period is minimized. This is accomplished by solving a trans-

portation problem in which the elements of the requirements vector

are the maximum allowable number of buses required by a school, the
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elements of the availability vector are the number of buses located

at each origin at the beginning of the period, and the elements of the

cost matrix are based upon the lower bound on the total traveling time

required by each combination of origin and school. Since the bus

capacity and riding time constraints often make the generation of a

feasible set of routes containing the absolute minimum number of routes

unattainable, the selection of this requirement vector is considered

reasonable. Moreover, because an attempt is being made to develop a

set of routes whose total traveling time approaches the lower bound, the

estimation of the elements of the cost matrix used by the method is a

logical choice.

The determination of a trial route which starts at the "super-

origin", visits every stop once and terminates at the school by either

the Nearest City Approach or Algorithm A tends to group stops that are

located in the same neighborhood. Since a school usually services an

area of less than twenty square miles, the variability associated with

the magnitude of the elements of the interstop travel time matrix is

low, Thus, arranging the bus stops to be serviced into groups located

in the same neighborhood is logical. The first (n-2) different trial

routes, where n is the total number of stops assigned to the school

including the origin and the terminus, are developed by the Nest

City Approach because it is a rapid and relatively efficient process.

After all trial routes are generated by the Nearest City Approach, the

route requiring the least traveling time is saved in order to reduce

the number of trial routes which Algorithm A will generate before it

is exhausted and to insure that Algorithm A does not create one of the

routes previously developed.
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Algorithm A is applied to the best available trial route because

a good "infinite capacity" bus route usually partitions into a good

routing system even though the best "infinite capacity" bus route does

not necessarily generate the best set of individual routes. Although

Algorithm A is a slightly slower process than the Nearest City Approach,

it guarantees that the next trial route developed will require less

traveling time. Both of the algorithms were selected because they are

rapid, efficient, and exhausted in a finite number of steps.

The partitioning procedure quickly generates routes which not only

satisfy the bus capacity and passenger riding time constraints but also

service stops in the same general area. If the set of routes developed

contains at most one more than the absolute minimum number of routes

required by the school, then each route of the set is improved by ap-

plication of Algorithm A until it is exhausted while preserving the

assignment of stops to the route made by the partitioning process. This

improvement procedure may reduce the traveling time required by the

individual route and thus tends to reduce the total transit time of the

routing system.

Minimizing the number of routes included in a routing system in-

sures that the buses are being utilized to full capacity and also tends

to reduce the total traveling time required by the set of routes by

eliminating some of the links between an origin and the first stop of

any route and, the links between the last stop of any route and the

terminus. Since at most ten students are usually assigned to a bus

stop in order to reduce the noise level and the possibility of landscape

damage in residential areas, satisfying the maximum allowable number of

routes in a routing system 'constraint presents no problem. However, if
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a transportation director decides to lump the bus stops extensively.so

as to reduce the sizeof the interstop travel time matrix or if the

population density is such that many students are assigned to one stop,

then determining a feasible routing system containing at most one more

than the absolute minimum number of routes may be unattainable. The

user of this method must then adjust the set of constraints by either

increasing the maximum allowable number of routes in the routing system

or by reducing the bus capacity. Another alternative is the addition

of bus stops to reduce the number of students assigned to individual

stops.

The specification of a criterion for accepting a set of routes

gives the transportation director the opportunity to select the degree

of optimality under which the routing system will be developed. This

acceptance criterion is applied to a routing system when all the routes

start at the "super-origin" because allocating an origin to each route

every time a feasible routing system is generated would require more

computer time than is warranted by the improvement which would be

realized.

The final allocation of origins to individual routes, if necessary,

is accomplished by solving a transportation problem in which the elements

of the availability vector are the number of routes which start at

each origin as determined by step one of the solution procedure and the

elements of the requirements vector are all equal to one. Each element

of the cost matrix is the total traveling time required by a route when

it starts at a particular origin. Optimization is with respect to

minimizing the total traveling time required by the final set of routes

for the school. initially, the solution procedure develops routing



systems in which all the individual routes start at the "super-origin"

in order to minimize the effects of this final allocation of origins to

routes. After an origin has been assigned to each route of the set, no

attempt is made to further reduce the transit time required by each

route because the improvement process may create a violation of the

student riding time constraint.

Although the final lower bound on the set of routes considered to

be the quasi-optimal routing system does not include the effects of the

bus capacity and riding time constraints, it does include a partial

effect of the number of routes included in the system. However, it

provides some measure for assessing the quality of the set of routes

developed even though it may be unattainable.

Thus, this heuristic procedure is considered to have a sound basis.

B. Computational Experience

Since there is no known bus routing method suitable for use on a

computer which will guarantee an optimum solution, any heuristic pro-

cedure must be judged not only with respect to its degree of success

relative to the best set of routes available for known problems but also

with respect to its consistency in the level of success.

A computer program based upon the procedure described in this

dissertation was written in FORTRAN IV for use on the CDC 6400 computer.

It can handle bus routing for a school district involving any number of

periods, nine route origins and nine schools per period; one hundred

twenty stops per school, thirty-four routes per school, and thirty

stops per route. All computations are done in integer arithmetic.

Computational experience was gained in three phases. First,
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Newton's procedure was applied to school bus routing and delivery pro-

blems reported in the literature. Then, the relationship between the

amount of computer time required to develop a routing system and the

number of stops serviced by the set of routes was examined. Finally,

this method was used to develop a set of bus routes for four schools

in the Williamsville Central School District, a suburban area in

Western New York.

Thompson
34

drew a map of a hypothetical school system showing the

location of the school, the location of 31 bus stops specified by the

schooi, and the number of students assigned to each stop. Moreover,

all roads were marked off in units of one-half mile. In order to

simulate the area of a real school system as closely as possible, the

map included features such as: isolated areas, contour roads, and

varying population densities; The elements of the symmetric interstop

distance matrix calculated from this map ranged between 1 and 13.5 miles;

the elements of the student load vector varied between 3 and 22 students.

Although it was stated that 3 minutes were required to travel one mile

and that loading at each bus stop required a minute, no restriction was

imposed on the student riding time. Buses of 30, 36, 42, 48, 54, 60,

66, and 72 passenger capacities were available. The problem was to

design the set of bus routes, all of which started and ended at the

school, required to transport the 252 students assigned to the 31 bus

stops.

The group of 49 school superintendents with experience in school

bus routing and the group of 37 transportation directors who participated

in Thompson's study were allowed to design the routing system for the

hypothetical school by any manual method they favored.
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The best set of routes developed by a member of the group of tran-

sportation directors involved 5 routes whose loads varied between 28

and 67 students and whose total traveling distance was 100 miles. The

best set of routes designed by a member of the group of school super-

intendents consisted of 5 routes whose loads ranged between 33 and 67

students and whose total traveling distance was 101 miles.

Newton's method was applied to the same hypothetical school for all

combinations of 4 bus capacities and 4 maximum allowable riding distances

or a total of 16 cases. Each case was run until Algorithm A was ex-

hausted at iteration or pass 49, i.e.. the Nearest City Approach generated

31 trial routes and Algorithm A generated 17 "infinite capacity" bus

routes. 177.133 seconds of computer time were used to develop the rout-

ing systems for the 16 cases or approximately 11 seconds per case. Most

of the solutions were accepted from one of the last 3 trial routes ge-

nerated by Algorithm A as was expected. A summary of the results

appears in Table 1.

Case 13 defined by a bus capacity of 54 students and a maximum

riding distance of 20 miles yielded the best routing system whose total

traveling distance was 94.5 miles. This represents a savings of 5.87,

miles with respect to the best set of routes developed by a transportation

director participating in Thompson's study
34

. The best set of routes

for Case 13 is:
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THOMPSON DATA

31 STOPS SERVICED
252 STUDENTS TRANSPORTED
APPROXIMATELY 11 SECONDS CDC 6400 COMPUTER TIME PER CASE

CASE

CAPACITY
OF
BUS

MAXIMUM
RIDING

DISTANCE

MINIMUM
NUMBER
ROUTES

NUMBER
ROUTES
USED

DISTANCE
ROUTE

SYSTEM RATIO

NUMBER
ANSWER
PASS

1 72 20.0 mi. 4 5 97.0 mi. 1.48 44

2 72 18.0 4 5 97.0 1.48 47

3 72 17.5 4 5 95.5 1.46 47

4 72 17.0 4 5 95.5 1.46 48

5 66 20.0 4 5 97.0 1.48 44
6 66 18.0 4 5 97.0 1.48 47

7 66 17.5 4 5 95.5 1.46 47

8 66 17.0 4 5 95.5 1.46 48
9 60 20.0 5 5 95.5 1.46 44

10 60 18.0 5 5 95.5 1.46 47
11 60 17.5 5 6 103,5 1.54 47
12 60 17.0 5 6 106.0 1.58 46
13 54 20.0 5 5 94.5 1.44 44
14 54 18.0 5 6 102.0 1.52 47

15 54. 17.5 5 6 102.0 1.52 47

16 54 17.0 5 6 105.5 1,57 47

Table 1



Number Route Load Miles

1 School-O-U-P-R-Q-RR-S-School 50 17.5

2 School-V-T-Z-W-School 50 16.0

3 School-Y-F-E-A-B-D-C-DD-School 50 23.0

4 School-X-G-H-HH-I-J-School 53 21.5

5 School-00-K-LL-M-L-N-School 49 16.5

Cases 3, 4, 7, 8, 9 and 10 produced routing systems whose total

traveling distance was 95.5 miles. However, all the routing systems were

not identical. Cases 3, 4, and 7 resulted in the same routing system;

case 8 yielded a second set of routes; cases 9 and 10 produced a third

routing system. Thus, by developing routing systems for various com-

binations of bus capacity and passenger riding distance constraints and

a fixed interstop distance matrix it may be possible to produce alter-

native routing systems whose total traveling distance is identical. A

routing system can then be selected from these sets upon the basis of

either bus load or individual route length variability or some other

statistic considered important by the school transportation personnel.

Studying alternate optimal solutions can be easily accomplished by us-

ing this computational procedure because of its speed and efficiency.

Boyer
6

designed a set of bus routes, all of which start and end at

the school, to transport 575 students assigned to 45 bus stops for a

school in Hennepin County, Minnesota. The problem involved a symmetric

interstop travel time matrix, a bus capacity constraint of 65 students,

and a riding time constraint of infinity. Since Boyer's method does

not require knowledge of all the elements of the interstop travel time

matrix, only 171 elements were listed in (6). The elements of the
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student load vector ranged between 1 and 33 students; the known elements

of the intek.stop travel time matrix varied between 1 and 23 minutes.

.

Although the absolute minimum number of buses needed to provide tran-

sportation for the school was 9, Boyer developed a routing system using

11 buses ancyrequiring 413 minutes traveling time.

Newton's procedure was applied to the same problems until Algorithm

A was exhausted. At iteration 51, i.e. the Nearest City Approach ge-

nerated 45 trial routes and Algorithm A generated 5 trial routes. A

routing system using 10 buses whose total traveling time was 394 minutes

with a lower bound of 221 minutes was developed in 13.392 seconds. The

quasi-optimal routing system, obtained from iteration 49 of this pro-

cedure, requires 4.8% fewer minutes than Boyer's solution. The author

feels that a better solution would have been obtained with the complete

interstop travel time matrix. The best set of routes is:

Number Route Load Time

1 S-22-23-S 60 32

2 S-24-25-26-31-21-20-19-S 65 38

3 S-37-41-36-35-S 65 27

4 S-40-39-34-38-S 60 30

5 S-33-32-29-30-27-28-12-S 57 62

6 S-6-13-11-5-1-S 63 49

7 S-2-3-4-7-9-8-S 56 48

8 S-10-43-42-5 62 36

9 S-44-45-18-17-S 61 36

10 S-16-15-14-S 26 36

Thus, Newton's method was able to obtain better routing systems

for the only two school bus routing problems which have appeared in the
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literature. The results for Thompson's data
34

were especially encourag-

ing because experienced transportation directors can usually develop

almost optimum routing systems for problems involving 20-30 stops by

visual trial-and-error adjustment.

The rest of the problems from the literature which were solved by

this computational procedure are delivery problems. Although, the

school bus scheduling problem and the delivery problem are conceptually

the same, differences which exist in them must be considered when

evaluating a heuristic procedure.

The school bus scheduling problem is characterized by a large

number of stops which must be serviced and a non-symmetric interstop

travel time matrix for reasons such as: restrictions imposed upon the

crossing of busy streets by students, one-way streets and limited access

highways. The elements of the interstop time matrix usually have a

narrow range and a low variability because of the relatively small area

serviced by a school and the restrictions imposed upon student walking

time to the bus stop. The elements of the student load vector also have

a narrow range and a low variability because of upper bounds usually

placed upon the number of students assigned to a bus stop to reduce the

noise level and the possibility of landscape damage in residential

areas. Moreover, the bus stops are usually arranged in groups because

of housing developments and the placement of bus stops along main

thoroughfares in sparsely populated areas. Even in sparsely populated

areas, no bus stop is really isolated, i.e. each stop is a relatively

short distance from either the school or any other stop designated by

the school. Moreover, any computer based procedure for the school bus

scheduling problem must require little computer time in order to be of
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practical value to a school district because of the frequent updating

of routing systems necessitated by population fluctuations, changes in

school boundaries, and the building of new schools and lack of funds.

The delivery problem is characterized by relatively few stops and

a symmetric interstop distance matrix whose elements usually have a

wide range and high variability because of the large area serviced by a

warehouse or depot. Since no restrictions are placed upon customer

demands, the elements of the customer demand vector also have a wide

range and high variability. Moreover, the delivery stops are not

necessarily arranged in groups because customer demand is not area de-

pendent. Then too, any computer based procedure for the delivery

problem may require a great deal of computer time and still be accept-

able to a corporation which normally allocates ample funds for the

development of routing systems.

These differences between the delivery problem and the school bus

scheduling problem are great enough to make the widespread interchange

of heuristic solution procedures infeasible. Therefore, an efficient

computational procedure which was designed primarily to handle routing

problems possessing the characteristics of the school bus scheduling

problem is not expected to be consistently superior with respect to the

quality of the routing systems developed when applied to delivery

problems.

Dantzig and Ramser
14

developed a set of truck routes, all of which

start and end at the depot, to eeliver 18200 gallons of material to 12

customers in 6000 gallon capacity trucks. The elements of the symmetric

interstop distance matrix varied between 5 and 52 units; the elements

of the customer demand vector ranged between 1100 and 1900 gallons.
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The Dantzig and Ramser method produced a routing system using 4 routes

whose total traveling distance was 294 units.

Clarke and Wright
9
developed a routing system for the same problem

requiring 4 routes covering 290 units, the conjectured optimum.

Newton's procedure was applied to the same delivery problem until

Algorithm A was exhausted at interation 13. A routing system using 4

routes whose total traveling distance was 304 distance units was de-

veloped in 1.117 seconds. The solution, obtained from iteration 5 of

this procedure, requires 3.4% more distance units than the Dantzig and

Ramser solution and 4.8% more distance units than the conjectured

optimum.

The set of routes developed by this procedure is:

Number Route Load Distance

1 0-6-7-5-0 4300 64

2 0-9-8-10-0 5300 92

3 0-11-12-4-3-0 5700 120

4 0-2-1-0 2900 28

Clarke and Wright9 desigrtA a set of truck routes, all of which

start and end at the depot, to deliver 104,300 pounds of goods to 30

customers in 14,000 pound capacity trucks. The elements of the

symmetric interstop distance matrix ranged between 3 and 98 miles; the

elements of the customer demand vector varied between 100 and 12,300

pounds. The Clarke and Wright solution9 used 8 trucks, the absolute

minimum number of trucks possible, and required 1427 miles. For the

same problem, the Dantzig and Ramser method
14

produced a routing system

using 10 routes whose total traveling distance was 1766 miles. By
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visual trial-and-error adjustment, Gaskell
18

, developed a routing system

for this problem using 8 routes and covering 1416 miles.

Newton's procedure was applied to the same problem until Algorithm

A was exhausted at iteration 44. A routing system using 9 routes whose

total traveling time was 1544 miles was developed in 7.948 seconds.

The solution, obtained from iteration 5, required 9% more miles than

the Gaskell solution, 8.2% more miles than the Clarke and Wright method,

and 14.3% fewer miles than the Dantzig and Ramer solution.

The set of routes developed by this method is:

Number Route Load Distance

1 0-6-5-11-16-15-9-7-13-29-0 13700 215

?. J1-12-14-4-3-94.,22,11-0 13500 207

3 0-27=26-0 11900 199

4 0-8-10-19-0 8700 176

5 0-18-25-20-0 12200 150

6 ';-2-1-21-17-0 8500 111

7 0-30-0 12300 136

8 0-28-0 9500 186

9 0-19-0 14000 164

Cochran
10

designed the routing systems for two delivery problems

using a modified Clarke and Wright method. Problem 1 involved 14,461

units to be delivered to 12 customers in trucks of 4500 unit capacity.

The elements of the symmetric interstop distance matrix varied between

8 and 315 units; the elements of the customer demand vector ranged bet-

ween 100 and 3726 units. The Cochran solution
10

used 4 routes whose

total traveling distance was 1433 units.

Newton's method was applied to Problem 1 until Algorithm A was
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exhausted at iteration 19. A routing system containing 4 routes whose

total traveling distance was 1383 units was developed in 1.717 seconds.

The solution, obtained from iteration 18 of this procedure, required

3.6% fewer distance units than the solution produced by the modified

Clarke and Wright method. Although the relative locations of the

delivery stops are unavailable, the author feels that this computational

procedure produced a superior solution because the delivery stops were

arranged in groups and thus Problem 1 resembled a school bus scheduling

problem.

The set of routes developed by this method is:

Number

1

Route
. __-.

0-7-8-5-0

Load
-........

3290

Distance

185

2 0-14-0 .3726 444

3 0- 6- 12- 13- 11 -10 -0 3745 478

4 0-4-3-2-9-0 3700 276

The first two routes appeared in both routing systems.

Cochran's Problem 2
10

involved 1405 units of goods to be delivered

to 25 customers in 120 unit capacity trucks. The elements of the

symmetric interstop distance matrix varied between 2 and 221 distance

units; the elements of the customer demand vector ranged between 15

and 100 units. Using a modified Clarke and Wright method, Cochran

designed a routing system using 14 trucks whose total traveling distance

was 1468 distance units.

This computational procedure was applied to Problem 2 until

Algorithut A was exhausted at iteration 31. A routing system using 14

trucks whose total traveling distance was 1486 distance units was
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developed in 3.637 seconds. The solution, obtained from iteration 12

of this procedure, travels 1.2% more distance units than the solution

obtained by the modified Clarke and Wright method. Both solutions used

2 more trucks than the absolute minimum number of trucks possible. This

was due to the combination of customer demand loads, most of which were

greater than 50 demand units, and the location of the customers, i.e.

custc.ders in the same general area had total demands which exceeded the

truck capacity and thus one route could service only one or two stops.

The set of routes developed by this method is:

Number Route Load Distance

1 0-13-11-0 90 82

2 0-7-15-0 120 70

3 0-16-14-0 120 102

4 0-2-0 60 4

5 0-3-0 80 10

6 0-4-9-0 110 56

7 0-5-0 90 28

8 0-8-6-0 115 76

9 0-10-0 60 48

10 0-12-0 90 54

11 0-17-18-0 120 185

12 0-19-20-21-0 110 210

13 0-24-25-0 120 276

14 0-23-22-26-0 120 285

Routes 1, 5, 6, 7, 10, 11, 12, 13, and 14 appeared in both routing

systems. If routes 4 and 9 are merged into one route 0-2-10-0 which

requires 52 distance units then the routing system will use one less

truck. However, the total traveling distance of the routing system with

the merged routes in this case happens to remain unchanged. Although

65



the purpose of a computer based routing procedure is to avoid visual

trial-and-error adjustments which become less efficient and highly im-

practical as problem size increases, this merging of two routes is

noted as a point of interest.

Gaskell
18

created four new delivery problems which were constrained

by both truck capacity and route length. Total route distance included

not only the number of units covered in traveling between delivery

stops but also an allowance of 10 miles for each customer serviced.

These problems were designed to compare the efficiency of variations of

the Clarke and Wright method with respect to groupings of stops and

isolated customers.

Routing systems for each of these delivery problems were developed

by the Visual Method, a combination of trial-and-error adjustment and

manual permutation of groups of delivery stops. The routing systems

produced by. the Visual Method were the best available and therefore

were used to evaluate the routing systems developed by the computer

based variations of the Clarke and Wright method. Since these problems

involved at most 32 delivery stops, the time consuming Visual Method

produced optimal routing systems. However, for larger problems it would

be unable to compete with computer based procedures. Thus, the routing

systems developed by the computational procedure of this dissertation

will be compared primarily with the routing systems produced by

variations of the Clarke and Wright method, a computer based procedure.

The first problem, Case Study Number 3, involved 29,370 units to

be delivered to 32 customers in 8000 unit trucks. Each route was not

to exceed 240 miles including the mileage allowance of 10 miles per

customer. The elements of the interstop distance matrix varied between
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1 and 118 miles; the elements of the customer demand vector ranged

between 40 and 4000 units. This case is characterized by a close group-

ing of some of the customers, a centrally located depot with respect

to 30 of the delivery stops and 2 customers located a great distance

from the depot.

The Visual Method yielded a routing system using 4 routes whose

total traveling distance was 813 miles. The best solution produced by

a variation of the Clarke and Wright method used 5 route; and covered

821 miles. However, the poorest solution produced by a variation of

the Clarke and Wright method used 5 routes and required 850 miles.

Newton's prodedure was applied to Case Study Number 3 until

Algorithm A was exhausted at iteration 39. It produced a routing system

using 5 routes whose total traveling distance was 886 miles. The so-

lution, obtained from iteration 23 of the procedure, required 7.9% more

miles than the best solution obtained by a variation of the Clarke and

Wright method. The reason that this computational procedure designed

a less desirable routing system was the presence of the isolated de-

livery stops which are generally not present in the school bus schedul-

ing problem.

The set of routes developed by this method is:

Number Route Load Distance

1 0-17-24-23-22-20-21-18-19-15-14-0 6900 228

2 0-1-11-5-6-7-8-9-10-32-13-0 7920 177

3 0-31-30-3-4-2-12-0 6350 222

4 0-29-28-27-26-25-0 7500 147

5 0-16-0 700 112
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The second problem, Case Study Number 4, involved 22,500 units to

be delivered to 21 customers in 6000 unit trucks. Each route was to be

less than 200 miles in length including the mileage allowance of 10

miles,per customer. The elements of the interstop distance matrix

varied between 3 and 83 miles; the elements of the customer demand vector

ranged between 100 and 2500 units. None of the customers are isolated

from either the depot or from other customers. The variability of the

elements of the interstop distance matrix is relatively low.

The Visual Method produced a routing system using 4 routes whose
__-

total traveling distance was 585 miles. The best solution produced by

a variation of the Clarke and Wright method used 4 routes and covered

598 tilde. However, 'the poorest solution produced by a variation o£ the

Clarke and.Wright method used 4.-routes and required' 648 miles.

Newton's procedure was applied to Case Study Number 4 Until'Al--

gorithm A was exhausted at iteration 25. A routing system using 4 routes

whOse total- 'traveling distance was 593 miles was'developed.- The:eolu

tion,'obtained-fram iteration 22"of-this procedure required lIefewer

miles than the best and .9%.fewer miles than'the poorest routing systems

designed by variations of the Clarke and Wright method.

The set of routes developedby this. method

gumber.

1 '

Route

0-6-4-2-5=79-0

Load

5600

' Distance

173

2 0-10-8-3-4-;11-11-0 5400 162

3 0-12-15-18-16-14-0 .5500' 126

4 '''''- 0-17-20-21-19-0 -' 6000 '. 132

Routes 1 and 2 also appear in the routing system developed by the Visual
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Method. Since none of the customers were isolated and the variability

of the elements of the interstop distance was low, Case Study Number 4

possessed two of the characteristics of the school bus scheduling pro-

blem and this computational procedure developed a superior routing

system.

The third problem, Case Study Number 5, involved 12,750 units of

goods to be delivered to 29 customers in 4500 unit capacity trucks.

Each route was not to exceed 240 miles including the mileage allowance

of 10 miles per delivery stop. The elements of the interstop distance

matrix ranged between 1 and 121 miles; the elements of the costomer

demand vector varied between 100 and 3100 units. This problem was

characterized by a loose grouping of customers located at various dis-

tances from the depot. esskell considered this to be a difficult

problem.

The Visual Method designed a routing system containing 4 routes

whose total traveling distance was 876 miles. The best solution pro-

duced by a variation of the Clarke and Wright method used 5 routes and

required 943 miles. However, the poorest routing system developed by a

variation of the Clarke and Wright method involved 5 routes covering

1017 miles.

Newton's method was applied to Case Study Number 5 until Algorithm

AVAS exhausted at iteration 33. A routing system using 5 routes whose

total: traveling distance was 913 miles was developed. The solution,

obtained:1;cm iteration 30 of this procedure, required 3.3% fewer miles

than the best and 11.3% fewer miles than the poorest routing systems

designed by, variations of the Clarke and Wright method.



The set of routes developed by this method is:

Number Route Load Distance

1 0-21-14-8-9-17-12-11-10-28-18-0 4125 220

2 0-15-16-7-13-0 1000 156

3 0-26-28-27-25-24-29-0 2850 234

4 0-3-6-1-4-5-2-0 3975 216

5 0-22-20-19-0 800 87

Again, this computational method produced a superior routing system

because the customers were arranged loosely in groups, a characteristic

of the school bus scheduling problem.

The fourth problem, Case Study Number 6, involved 10,189 units of

goods to be delivered to 22 customers in 4500 unit capacity trucks.

Each route was not to exceed a length of 240 miles including the mileage

allowance of 10 miles per delivery. The elements of the interstop dis-

tance matrix ranged between 4 and 145 miles; the elements of the

customer demand vector varied between 60 and 4100 units. Some of the

customers are loosely arranged in groups with the distance between

customers greater than the distance between neighboring stops in other

problens. Cate customer is isolated at a relatively great distance from

the depot.

The Visual Method produced a routing system involving 5 routes whose

total traveling distance was 949 miles. The best solution produced by a

variation of the Clarke and Wright method used 5 routes and required

955 miles. However, the poorest solution produced by a variation of

the Clarke and Wright method required 6 routes covering 1015 miles.

Newton's procedure was applied to Case Study Number 6 until Al-

gorithm A was exhausted at iteration 25. A routing system involving 6
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routes whose total traveling time was 1009 miles was developed. The

solution, obtained from iteration 14 of this procedure, requires 5.7%

more miles than the best solution produced by a variation of the Clarke

and Wright method.

The set of routes developed by this method is:

Number Route Load Distance

1 0- 14- 17- 15- 16 -3 -2 -0 1144 227

2 0-11-13-6-1-0 775 156

3 0-10-0 4100 78

4 0-12-9-5-4-8-7-0 2700 200

5 0-18-19-22-20-0 1295 216

6. 0-21-0 175 132

Routes. 2, 3, and 6 appeared in both this routing system and the

one developed by the Visual Method. 17.406 seconds of computer time

were used to solve the last four problems. Again, as a point of in-

terest, if. routes 2 and 6 are merged to form the route 0-21-11-13-6-1-0

which requires275.miles, then the routing system will contain one less

route and tile :total traveling distance will ee reduced to 996 miles.

Newton's procedure, developed primarily to handle the school bus

scheduling problem, behaved as was to be expected when applied to eight

deltvery problems from the literature. When the delivery problem pos-

sessed some of the characteristics of the school bus scheduling problem,

this computational method produced a superior routing system. On the

clther_handwhen the delivery problem invo..d isolated customers and

many customers who were not even loosely grouped in areas, then this

computational method, produced a less desirable routing system than the

other computerbasedmethods.. However, the number of extra miles
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required by the routing systems developed by this computational procedure

never exceeded the best solution generated by a variation of the Clarke

and Wright method by more than 8.2% which occurred in the Clarke and

Wright 30 stop problem
9

. Thus, from a practical standpoint, this com-

putational procedure performed at an acceptable level even when applied

to delivery problems possessing characteristics which the method was not

designed to handle.

Since the ratio of the total traveling time or distance required by

the set of routes developed divided by the lower bound on the total

traveling time or distance is used not only to assess the efficiency of

the routing system but to form a criterion for the acceptance or rejec-

tion of a set of routes as the quasi-optimal solution for the problem

being considered, an examination of this ratio with respect to the

problems from the literature is warranted.

A summary of the results obtained by applying this computational

procedure to two school bus scheduling and eight deli =very problems

from the literature is given in Table 2. The column labeled % gives

the percentage by which the method of this dissertation either exceeded

or improved the total number of time/distance units required by the

best routing system developed by a computer based procedure for each

problem being considered. In the case of the Thompson-31 stop problem
34

,

routing systems developed by manual methods were the only ones

available.

By observation, the ratio of the total traveling time/distance for

a routing system divided by the lower bound on the total traveling

time/distance yields little information about the relative efficiency

of a routing system developed by this computational procedure in

72



SUMMARY OF RESULTS FOR PROBLEMS IN THE LITERATURE

PROBLEM NAME
TOTAL TIME/DISTANCE

ROUTE SYSTEM
ROUTE SYSTEM
LOWER BOUND RATIO %

.......-

1110MPSON-31 STOPS 94.5 65.5 1.44 -5.8

:BOYER:45 STOPS 394,0 221.0 1.78 -4.8

DANTZIG & RAMSER-12 STOPS 304.0 145.0 2.10 +4.8

CLARKE & WRIGHT-30 STOPS 1544.0 . 868.0 1.78 +8.2

COCHRAN-12 STOPS. 1383.0 816.0 1.69 -3.6

.COURAN-25 STOPS 1486.0 383.0 3.88 +1.2

GASKELL #3-32 STOPS
... (,

886.0 620.0 1.43 +7.9

GASKELL #4-21 STOPS 593.0 432.0 1.38 -1.0
.:.

GASKELL #5-29 STOPS 913.0 590.0 1.55 -3.3

A.-

GAINGLI. #6-22 STOPS 1009.0 626.0 1.61 +5.7

Table 2



comparison with one generated for the same problem by another computer

based method or the conjectured optimum routing system attainable.

The ratio seems to be sensitive to the range and variability of

the elements of the interstop travel time/distance matrix and the

grouping of stops as evidenced by the Thompson-31 stop problem
34

and

the Gaskell #4-21 stop problem18. Both of these problems had inter-

stop travel time/distance matrices whose elements had a narrow range

and low variability and the stops were arranged in groups. Moreover,

both of these problens also had low ratios.

This ratio appears to reflect the effect of using more than the

absolute minimum number of routes required as evidenced by the Cochran-

25 stop problem
10

. The routing system developed for the problem con-

tained two more than the absolute minimum number of routes required and

the ratio was 3.88.

The routing system developed by Newton's procedure for the Dantzig

and Kamser-12 stop problem
14

traveled 4.8% more distance units than

the conjectured optimal routing system whose total traveling distance

was 290 distance units and the ratio was 2.10. However, the ratio of

the total traveling distance for the conjectured optimal routing system

divided by the lower bound on the total distance equals 2.0.

Although the ratio is a relatively poor predictor of the degree of

optimality attained by a routing system developed by any method, it can

still be used as a criterion for terminating this computational pro-

cedure. Knowledge of reasonable ratios which can be expected for a

routing system developed for a school will be acquired after experience

with this procedure has been gained.

Although this computational procedure has proved to be efficient
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with respect to the quality of routing systems developed and with re-

spect to the amount of computer time used to solve ten problems from

the literature, no problem involved more than 45 stops, the Boyer data
6

.

A thorough evaluation of a heuristic procedure requires that its

efficiency be also examined for problems of the size which it would be

expected to handle in the real world.

Thus, 18 problems involving up to 120 bus stops were created from

tables of random numbers to examine the computer time required to

develop routing systems for problems involving various numbers of stops.

The elements of the interstop travel time matrices ranged between 2 and

20 minutes; the elements of the student load vector varied between 1

and 9. These ranges of values were selected because they satisfied the

characteristics associated with the school bus scheduling problem.

All problems were constrained by a student riding time of 45 minutes

and all problems were run until Algorithm A was exhausted, i.e. no

further trial routes could be generated. A summary of the results ap-

pears in Table 3.

By observation, it appears that the lower bus capacity for a pro-

blem involving the same number of bus stops requires slightly less

computer time. This is due to the fact that the individual routes

contain fewer bus stops than the routes for buses of larger capacity

and the amount of time required to improve each individual route is

decreased.

Moreover, it seems that the quasi-optimal routing system is

usually selected from an iteration whose trial route was generated by

Algorithm A. This evidence also appeared when routing systems were

developed for ten priblems from the literature and thus bears out the
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conjecture that better trial routes tend to partition into better sets

of routes.

Since, this computational procedure was able to develop routing

systems for problems involving 120 stops in approximately seven minutes,

it is considered to be efficient with respect to computer time usage

and therefore would be of practical value to a school district.

Finally, to examine the worth of Newton's procedure with respect

to a real world situation, it was applied to four schools in the

Williamsville Central School District, a rapidly growing suburban area

in Western New York.

This district maintains a fleet of 78 buses which service ten

elementary schools, two middle schools and three secondary schools

located within the 42 square mile area of the district and twenty

private and special schools outside the district. Furthermore, it is

anticipated that ten new schools will be added to the school system

within the next five years. Therefore, the Williamsville Central

School. District expects to be continually faced with a complex school

bus routing problem and expressed a great interest in using a practical

computer based method for designing its school bus routes.

The transportation director and the assistant to the superintendent

of schools requested that Newton's procedure be applied to Academy

Elementary School, Forest Elementary School, South Senior High School,

and Dodge Elementary School. The first three schools service the

established densely populated part of Williamsville. Dodge Elementary

School is located in the new, sparsely populated section of the area.

For each school, the school administrators designated the bus

stops on a large map of the area and assigned students to the stops
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from census tracts. Each bus stop was assigned two labels, a road code

number and a map number.

The interstop travel distance matrices were then developed manual-

ly by using a map reader. Two people developed the matrices for the

four schools in approximately forty hours. The elements of the inter-

stop distance matrix were then multiplied by a time factor, specified

by the school administratt,:s, to convert the distance matrix into an

interstop travel time matrix. This time factor was large enough to

include the time spent in servicing a stop. Since the school adminis-

trators felt that variability in travel time was negligible when con-

sidering all the routing systems collectively, no attempt was made to

include the effects of this variability.

The elements of the interstop travel time matrix for the Academy

School varied between 0.5 and 14 minutes or 0.25 and 7 distance units;

the elements of the student load vector ranged between 2 and 44. The

large elements of the student load vector were due to the high density

of the population in the area serviced by the Academy School and the

lumping of pointf, by the school administrators. The results of apply-

ing this computational procedure to the Academy School data is

summarized in Table 4. The routing system developed by this heuristic

procedure requires 40% fewer distance units and 1 bus less than the

current routing system used by the school.

The elements of the interstop travel time matrix for the Forest

School ranged between 0.5 and 14 minutes or 0.25 and 7 distance units;

the eleMents of the student load vector varied beicieen 1 and 30

students. The Forest School is located in a high population density

area. The results of applying Newton's method to the Forest School
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data is summarized in Table 5. The routing system developed by this

computational procedure requires 38% fewer distance units than the

current routing system used by the school. However, both routing

systems use 10 buses when the bus capacity is 67 students. Because of

the lumping of bus stops, the routing systems required more than one

extra bus over the absolute minimum number of buses required when the

bus capacity was reduced to 57 and 52.

The elements of the interstop travel time matrix for the South

Senior High School varied between 0.5 and 22 minutes or 0.25 and 11

distance units; the elements of the student load vector ranged between

1 and 41 students. These large student load elements were due to lumping

of bus stops by the school administrators. The results of applying

this computational procedure to the South Senior High School data is

summarized in Table 6. The routing system developed by Newton's

procedure requires 25% fewer distance units and one less bus than the

current routing system used by the school.

The elements of the interstop travel time matrix for the Dodge

School varied between 0.5 minute and 35 minutes or 0.25 and 17.5

distance units; the elements of the student load vector ranged between

1 and 27 students. All the routes for the Academy School started from

the South Senior High School, all the routes for the Forest School

started from the Academy School and all the routes for the South

Senior High School started from the garage. However, the bus routes

for the Dodge School can start at any of six origins. The results of

applying Newton's procedure to the Dodge School data is summarized in

Table 7. The routing system used by this heuristic procedure requires

17% fewer distance units and two less buses than the current routing
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system used by the school. Since this problem involved 96 stops, a

study was made to examine the effect of limitations upon the number

of trial routes generated. By observation, it can be noted in Table

7 that increasing the number of iterations allowed for each case used

considerably more computer time but did not usually reduce the total

number of distance units required by the routing system.

The application of Newton's computational procedure to four

actual school bussing problems demonstrated its effectiveness. It

was able to develop routing systems which were superior to the routing

systems currently used by these schools with respect to the distance

traveled and the number of buses used. Moreover, it was able to

produce these high quality routing systems using an operationally

acceptable amount of computer time.
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VII. SUMMARY AND RECOMMENDATIONS

The model developed in this dissertation is a general one which

utilizes variables that are applicable to all school systems. It

represents, a significant improvement over the manual and other computer

based methods available in that it generates routing systems which are

efficient with respect to the total mileage traveled and the number of

routes required using a minimal amount of computer time. Moreover, it

routes buses from school-to-school in addition to developing the in-

dividual routes for a school.

2" review of the work accomplished during this study leads to the

following recommendations for future efforts in the automatic design

of school bus routes:

1. The manual calculation of the elements of the interstop

distance matrix is tedious, error prone, and time

consuming. Therefore, a great need exists for a

computer based procedure for developing an accurate,

non-symmetric interstop distance matrix involving 50-120

bus stops located in either densely or sparsely populated

areas.

2. A computer based procedure for determining a student

load vector whose elements could be constrained by student

walking distance and size of load at a stop would be

useful.

3. In order to avoid the development of a routing system

involving a combination of full bus loads and half filled

buses and a combination of maximum length and very short

routes, a need exists for a method which would balance the
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sizes of the bus loads and the lengths of the individual

routes.

4. Since government aid is usually given to school districts

for every bus load of a certain size, it would be useful

to be able to specify both upper and lower limits on

bus capacity.

5. School districts are interested in the cost associated with

a transportation system. Therefore, it would be useful

to be able to develop routing systems with respect to

minimizing a cost function which would incluChe the effects

of the total mileage traveled and the size of the buses

used.

6. A great need exists for u computer based procedure whirl

would optimally assign all the routes which a particular

bus would service between the time it left the garage

and returned.
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APPENDIX

The Appendix contains a listing of Program BUS2 which generates

bus routes and schedules for a multi-school system by means of the

method described in this dissertation. Program BUS2 is written in

FORTRAN IV for the CDC 6400 computer.
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